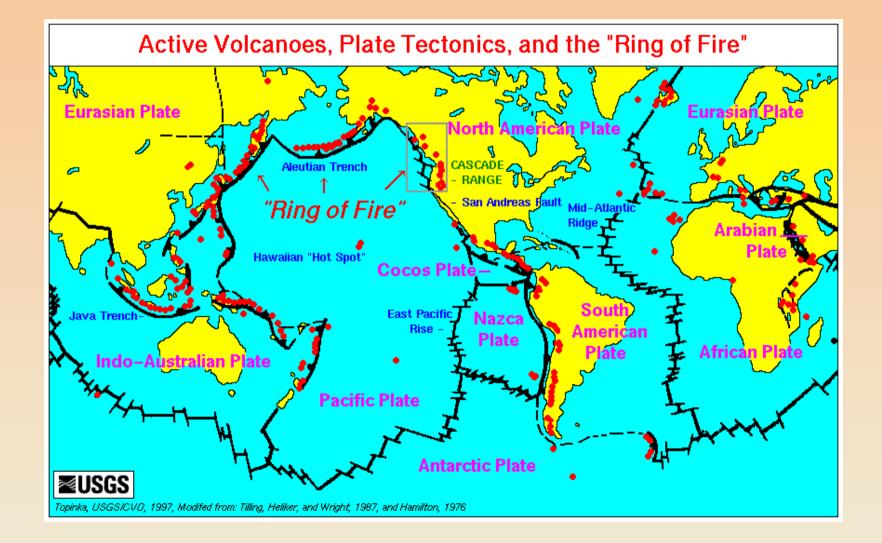
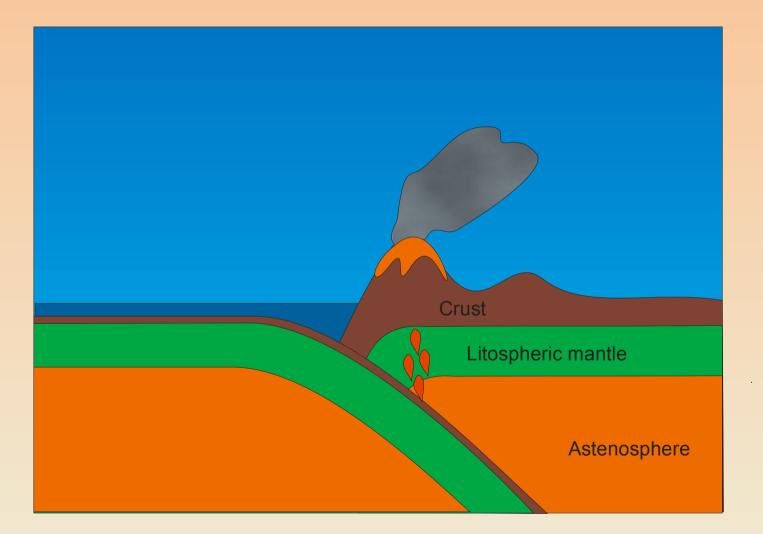
### Importance of volcanic activity in climate change models

#### Petra Belobrk, Zita Brigljević, Gordana Medunić

University of Zagreb, Faculty of Science, Department of Geology Horvatovac 95, 10 000 Zagreb




- Advancement in science and engineering → application in Earth Sciences
- Climate change models → understanding the past and foreseeing the future
- Oreskes et al. (1994): how can mathematics calculate something as non – linear as climate?


## What kind of eruption can affect climate?

- Highly explosive volcanoes (VEI scale)
   → high eruption column
   → great amounts of ejecta
- High concentrations of sulphur within the volcano

#### "The Ring of Fire"

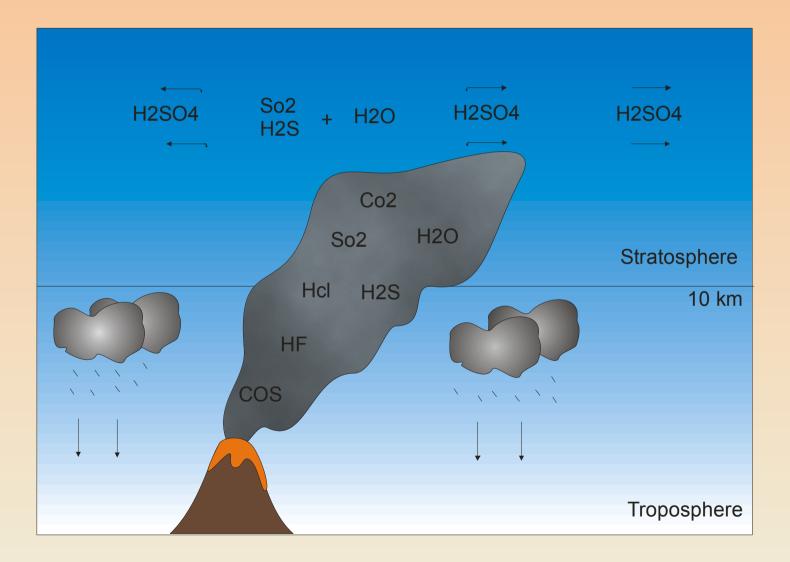


#### Convergent plate boundary

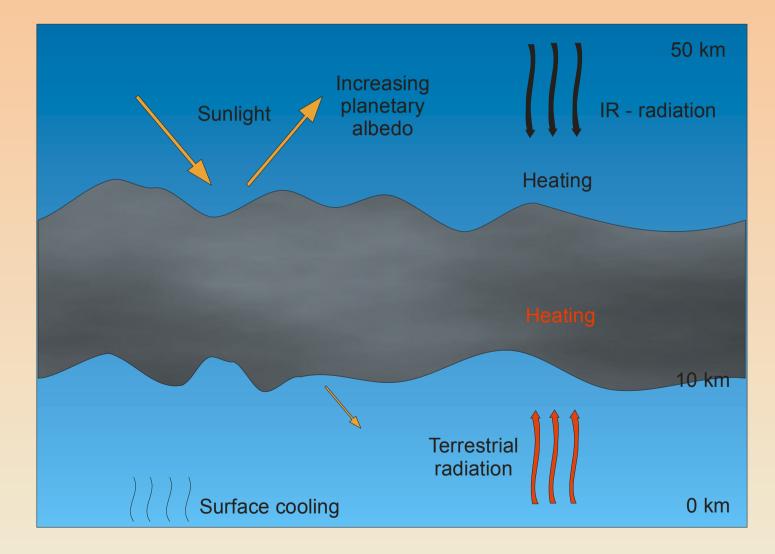


#### Products of a volcano

- Lava
- Volcanic ash
- Tephra
- Gases:




 $\circ$  H<sub>2</sub>O, COS, CO<sub>2</sub>, CO, N<sub>2</sub>, SO<sub>2</sub>, H<sub>2</sub>S, HF, HBr...


#### Volcanic ash

- Composition:
  - fine grained rock
  - mineral fragments
  - glass shards
- Greatly interferes with air traffic
- Damages the aircrafts
- No significant impact on climate

#### Formation of aerosols



#### Effects of aerosols



#### Consequences of H<sub>2</sub>SO<sub>4</sub> aerosols

- Sunlight backscatter
  - → Decrease in global temperature a year after the eruption
- Stratospheric heating
  - $\rightarrow$  Winter warming effect
- Aircraft problems

### Influence of H<sub>2</sub>SO<sub>4</sub> aerosols on global temperature

|                    |                      |                       |                   |                        |                         |                           | mean compared to |
|--------------------|----------------------|-----------------------|-------------------|------------------------|-------------------------|---------------------------|------------------|
| Year* <sup>3</sup> | ▲ Date* <sup>3</sup> | Volcano*3             | VEI* <sup>3</sup> | Location <sup>*3</sup> | Latitude * <sup>3</sup> | H2SO4 metric tons         | the next year *4 |
| 1883               | May, 20th            | Krakatau              | 6                 | Indonesia              | 6.102 S                 | 2,94 x 10^4* <sup>1</sup> | -0,08            |
|                    |                      | Augustine             | 4                 | Alaska, USA            | 59.363 N                |                           |                  |
| 1886               | June, 10th           | Okataina              | 5                 | New Zealand            | 38.120 S                | 5,00 x 10^6*1             | -0,08            |
|                    |                      | Niuafo'ou             | 4                 | Tonga                  | 15.600 S                |                           |                  |
|                    |                      | Tungurahua            | 4                 | Ecuador                | 1.467 S                 |                           |                  |
| 1902               | October, 24th        | Santa Maria           | 6                 | Guatemala              | 14.756 N                | 1,80 x 10^5*1             | -0,06            |
|                    |                      | Soufriere St. Vincent | 4                 | West Indies            | 13.330 N                | 2,40 x 10^5*1             |                  |
|                    |                      | Mount Pelee           | 4                 | West Indies            | 14.820 N                |                           |                  |
| 190 <b>7</b>       | March, 28th          | Ksudach               | 5                 | Khamchatka, Russia     | 51.800 N                | NIA* <sup>6</sup>         | -0,01            |
| 1912               | June, 6th            | Novarupta             | 6                 | Alaska, USA            | 58.270 N                | 7,90 x 10^6*1             | 0,02             |
| 1913               | January, 13th        | Colima                | 5                 | Mexico                 | 19.514 N                | NIA* <sup>6</sup>         | 0,16             |
| 1932               | April, 21st          | Cerro Azul - Quizapu  | 5                 | Andes, Chile           | 35.653 S                | NIA* <sup>5</sup>         | -0,15            |
|                    |                      | Fuego                 | 4                 | Guatemala              | 14.473 N                |                           |                  |
| 1955               | October, 22nd        | Bezymianny            | 5                 | Khamchatka, Russia     | 55.978 N                | 6,00 x 10^6*1             | -0,06            |
| 1963               | February, 18th       | Agung                 | 5                 | Bali, Indonesia        | 8.342 S                 | 2,84 x 10^6*1             | -0,27            |
| 1980               | March, 27th          | Mount St. Helens      | 5                 | Washington, USA        | 46.200 N                | 7,90 x 10^4* <sup>1</sup> | 0,05             |
| 1982               | March, 28th          | El Chichon            | 5                 | Mexico                 | 17.360 N                | 7,00 x 10^4* <sup>1</sup> | 0,18             |
|                    |                      | Galunggung            | 4                 | Java, Indonesia        | 7.250 S                 |                           |                  |
| 1991               | April, 2nd           | Mount Pinatubo        | 6                 | Philippines            | 15.130 N                | 30,00 x 10^6*2            | -0,19            |
|                    |                      | Mount Hudson          | 5                 | Andes, Chile           | 45.900 S                |                           |                  |

\*1 Bradley, R.S., Jones, P.D., Records of explosive volcanic eruptions over the last 500 years, Reprinted from 'Climate since A.D. 1500', edited by R.S. Bradley and P.D. Jones, Routledge London, 1992, 606 – 622

\*2 Liu, X., Penner, J.E., Effect of Mount Pinatubo H2SO4/H20 aerosol on ice nucleation in the upper troposphere using a global chemistry and transport model, Journal of Geophysical Research, Vol. 107, 2002, (2) 1-16

converted to teragrams from megatons (30 Mt)

\*3 Smithsonian Institution, National Museum of Natural History, Global Volcanism program

\*4 The calculations have been made using the data from GLOBAL Land-Ocean Temperature Index in 0.01 degrees Celsius, which is a table created by NASA

\*5 NIA - no information available

#### The Tambora eruption, 1815

- Greatest eruption in recorded historical data
- 1816
  - $\rightarrow$  'A year without a summer'
  - → Anomalously high rainfall in Europe during the summer
  - → 1 2°C cooler temperatures, for the mean of 1810 - 1819
  - $\rightarrow$  red sunsets, 'dry fogs'
  - $\rightarrow$  agricultural problems throughout the world

#### Conclusions

- Explosive volcanic eruptions
  - $\rightarrow$  disrupting the atmosphere
  - $\rightarrow$  affecting the climate
- Eruption greater than VEI 7 major consequences
- Could the volcanic eruptions be predicted in the future, along with their consequences?

#### **References:**

- Fyffe, W. S., McBirney, A. R. (1975): Subduction and the structure of andesitic volcanic belts, American Journal of Science, 275 – A, 285 – 297
- Halmer, M.M., Schminke, H.-U., Graf, H.-F., (2002): The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years, Journal of volcanology and geothermal research, 115, 511 – 528
- Keppler, H. (1999): Experimental Evidence for the Source of Excess Sulfur in Explosive Volcanic Eruptions, Science, 284, 1652 1654
- Kravitz, B., Robock, A. (2011): Climate effects of high latitude volcanic eruptions: role of the time of year, Journal of Geophysical Research, 116, 1 16
- Mason, B. G., Pyle, D. M., Oppenheimer, C.(2004): The size and frequency of the largest volcanic eruptions on Earth, Bulletin of Volcanology, 66, 735 748
- Miller, T.P. & Casadevall, T.J. (1999): Volcanic ash: Hazards to aviation. In: Encyclopedia of volcanoes (eds. H. Sigurdsson, B. Houghton, S.R. McNutt, H. Rymer & J. Stix). Volcanic hazards, 7, 914-930, Academic press, San Diego.
- Oppenheimer, C. (2003): Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815, Progress In Physical Geography, 27, 230 259
- Oreskes, N., Shrader Frechette, K., Belitz, K., (1994): Verification, validation, and confirmation of numerical models in the earth sciences, Science, 263, 641 646

- Perfit, M. R. (2001): Mid-ocean ridge geochemistry and petrology. In: Encyclopedia of Ocean Sciences (eds. J.H. Steele, K.K. Turekian & S.A. Thorpe). 1,778-1,788 Academic Press, San Diego.
- Robock, A. (2000): Volcanic Eruptions and Climate, Reviews of Geophysics, 38, 191 219
- Robock, A., Mao, J., (1995): The volcanic signal in surface temperature Observations, Journal of Climate, 8, 1086 1103
- Robock, A., Mao, J., (1992): Winter Warming from Large Volcanic Eruptions, Geophysical research letters, 12, 2405
   – 2408
- Sleep, N. H. (1992): Hotspot Volcanism and Mantle Plumes, Annual review of Earth and Planetary Sciences, 20, 19

   43
- Slezin, Yu. B. (2003): The mechanism of volcanic eruptions (a steady state approach), Journal of Volcanology and Geothermal Research, 122, 7 50
- Sparks, R.S.J. (2003): Forecasting volcanic eruptions, Earth and Planetary Science Letters, 210, 1 15
- Wallace, P.J. (2001): Volcanic SO2 emissions and the abundance and distribution of exsolved gas in magma bodies, Journal of Volcanology and Geothermal Research, 108, 85 106
- Wilson, L., (1980): Relationships between pressure, volatile content and ejecta velocity in three types of volcanic eruptions, Journal of Volcanology and Geothermal Research, 8, 297 313

# THANK YOU