Nonstationarity in the surface layer time series over complex terrain

¹Željko Večenaj & ²Stephan F. J. De Wekker

¹University of Zagreb, Faculty of Science, Department of Geophysics, Zagreb, Croatia

²University of Virginia, Department of Environmental Sciences, Charlottesville, VA, USA

> <u>zvecenaj@gfz.hr</u> dewekker@virginia.edu

CONTENT

✤ I. Introduction

II. Data

* III. Diagnostic of the nonstationarity

IV. Comparison of different approaches

✤ V. Summary

I. INTRODUCTION

- ♦ Statistical theory of turbulence → ensamble averaging of multiple realizations of the same turbulent process (e.g. Lenschow and Stankov 1986)
- Quite successful in laboratory conditions, but almost never in the atmosphere (e.g. Batchelor 1959; Tennekes and Lumley 1972; Wyngaard 2010)
- Ergodic assumption for the atmospheric data: average of a single realization represents an ensamble average
- Nonstationary atmospheric data → time average is weak approximation of ensamble average → enhanced scatter in turbulence statistics → enhanced uncertainty in similarity functions (MOST)

*** OBJECTIVES**

- → to investigate Monin-Obukhov similarity theory (MOST) in complex terrain using near-surface turbulence time series obtained during T-REX on NCAR ISFF towers by sonic anemometers
- → to determine the nonstationarity of the means and (co-)variances of
 30-min time intervals of these time series → 11 moments:
 - means: Q_U , Q_V , Q_W , Q_T
 - variances: Q_{uu} , Q_{vv} , Q_{ww} , Q_{tt}
 - covariances: Q_{uw} , Q_{vw} , Q_{wt}
- \rightarrow to use the stationary portion of data for investigation of MOST
- * 30-min intervals \rightarrow based on the assumption that eddies with a time scale of 30 min contain most of the turbulence energy

II. DATA

- ✤ T-REX experiment → Owens Valley, California → March and April 2006
- ★ Three NCAR-ISFF 30-m towers → CSAT3 ultrasonic anemometers at heights of 5, 10, 15, 20, 25 and 30 m → 60 Hz sampling frequency

- 61-day period (from 0000 UTC 1 March to 2359 UTC 30 April 2006) of u,
 v, w and t time series
- ✤ Gaps in observed 61-day time series due to:
 - \rightarrow The occasional power loss at different towers
 - \rightarrow the occasional malfunction of anemometers at different towers/levels

 \rightarrow not all 30-min intervals (2928 of them) are suitable for our analysis

z [m]	WT [%]	CT [%]	ST [%]
5	96.96	93.72	98.05
10	96.79	96.41	97.40
15	98.19	89.00	97.75
20	98.50	96.76	97.64
25	98.26	96.55	98.26
30	98.60	90.68	98.22

III. DIAGNOSTIC OF THE NONSTATIONARITY

- * 3 independent approaches \rightarrow 4 different methods:
 - (1) Statistical tests to determine trends

1a) Reverse arrangement test (RAT)

- if $162 \le A \le 272 \Rightarrow$ stat. moment is stationary

1b) Run test (RUT)

- if $10 \le R \le 21$ \rightarrow stat. moment is stationary

(2) Mahrt's (1998) method (M98)

- if $NR \le 2$ \rightarrow stat. moment is stationary

(3) Foken and Whichura (1996) method (FW96)

 \rightarrow it works only for second order moments

- if FW < 30 % \rightarrow stat. moment is stationary

♦ Examples: stationary by RAT, RUT, M98 and FW96 methods but still nonstationary → INTERMITTENCY

Additional criterion for stationarity of second orderr moments \rightarrow - if *IF* > 6/30 \rightarrow stat. moment is stationary

IV. COMPARISON OF DIFFERENT APPROACHES

V. SUMMARY

- ♦ Degrees of nonstationarity vary considerably with the used approach → extremely ambiguous results
- Not clear which method(s) would be most suitable for detecting nonstationarity in T-REX near-surface time series of statistical moments
- Simultaneous implementation of criterions imposed by RAT, RUT and M98 methods to means and criterions imposed by RAT, RUT, M98, FW96 and IFC methods to (co-)variances → extremely rigorous approach
- For the statistical moments that are declared as stationary by this approach, we have no further doubts in their stationarity

VI. CHARACTERISTICS OF THE NONSTATIONARITY

- Daily cycle of nonstationarity fractions of means, variances and covariances
- ♦ Composited daily cycle of $z/L \rightarrow$ evening transition \rightarrow nighttime period \rightarrow morning transition \rightarrow daytime period

