

Identification of diverse air pollution sources in a complex urban area of Croatia

Goran Gašparac¹, Amela Jeričević¹, Maja Maslać Mikulec², Prashant Kumar³, Maja Telišman Prtenjak⁴

goran.gasparac@crocontrol.hr

¹Croatian Civil Aviation Agency , Zagreb

²Geonatura Ltd., Zagreb

³Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom ⁴Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, Croatia

Challenges in meteorology 7

JEM article

Contents lists available at ScienceDirect

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

Research article

Identification of diverse air pollution sources in a complex urban area of Croatia

Amela Jeričević^a, Goran Gašparac^b, Maja Maslać Mikulec^c, Prashant Kumar^{d,*}, Maja Telišman Prtenjak^e

^a Croatian Civil Aviation Agency, Zagreb, Croatia

^b Geophysical and Ecological Modeling Ltd., Zagreb, Croatia; Croatian Meteorological and Hydrological Service, Zagreb, Croatia

^c Geonatura Ltd., Zagreb, Croatia

^d Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey,

Guildford, GU2 7XH, United Kingdom

e Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, Croatia

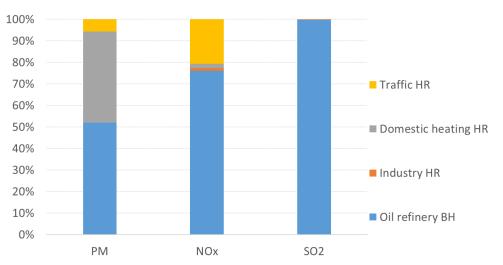
This presentation is based on following paper published in JEM:

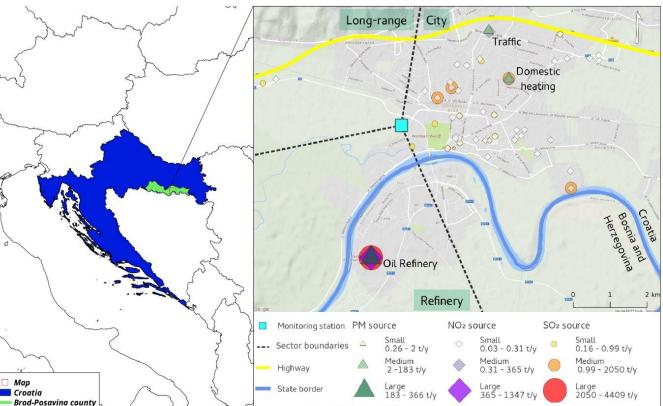
https://doi.org/10.1016/j.jenvman.2019.04.024

Challenges in meteorology 7

Introduction

- Identification of sources
- Commonly used source apportionment techniques:
 - Emission inventories
 - Receptor modelling (MBA, PMF)
 - Inverse modelling
 - Artificial neural network
 - Air quality models
- Factor analysis better illustrate source apportionment (Conditional bivariate polar plots, CBPF - extension of Conditional probability function)
- Here we used:
 - PMF quantitative information on the contribution of specific source
 - CBPF identification of geolocation of sources of PM




Study area

City of Slavonski brod

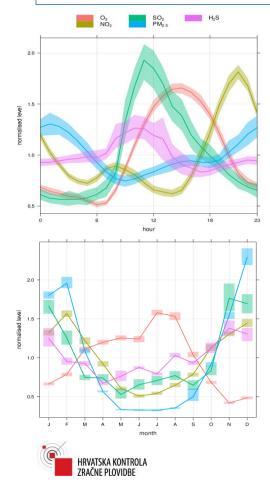
Recognised sources from Action plans:

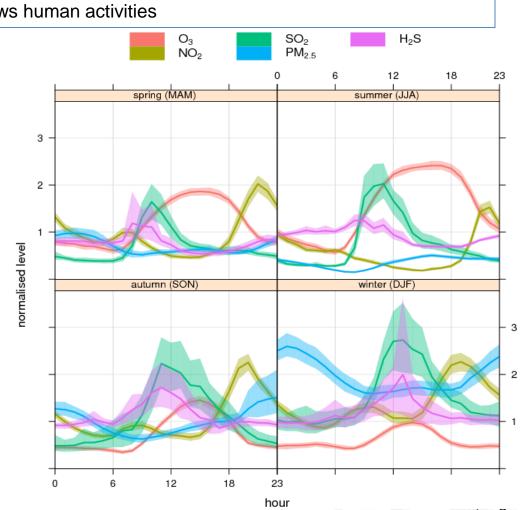
- Traffic
- Domestic Heating
- Industry
- Long range
- Oil refinery (BIH)

In this work we made analysis of measurements from periods:

- 2010 – 2014 for aerosols + gaseous compounds

- 2015 for PM2.5




4-5 NOVERTIDER ZUZU, Zagreb

Relationship of diurnal and annual variations in pollutant concentrations with anthropogenic activities

Qualitative evaluation of the impact of the anthropogenic sources

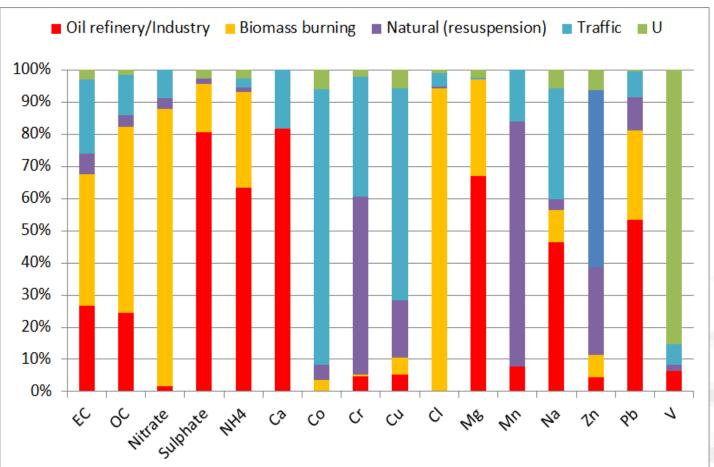
- Understanding temporal diurnal, yearly variability
- The amount to which pollution follows human activities

PM_{2.5} chemical composition analyses

Reliable techniques for source apportionment of PM – chemical analysis. During seasons and year, dominating particles:

• OC

- Sulfate
- Ammonium
- EC

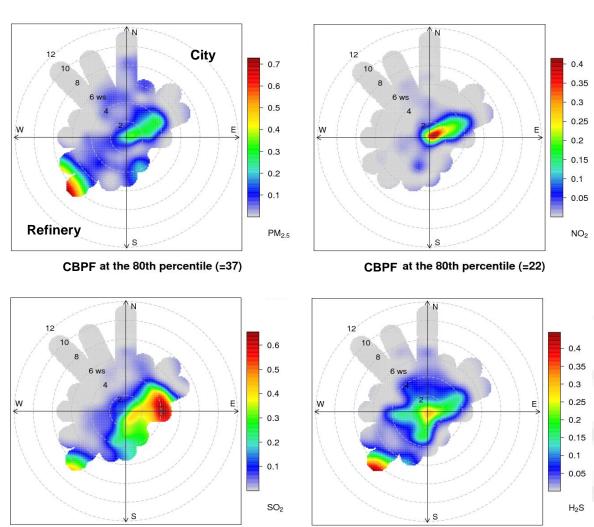

	Spring		Summer		Autumn		Winter		Year	
Element	(µg/m³)	(%)	(µg/m³)	(%)	(µg/m³)	(%)	μg/m³)	(%)	μg/m³)	(%)
Total mass	23.95	100	16.04	100	39.71	100	65.00	100	36.174	100.00
EC	1.23	5.14	0.58	3.62	1.67	4.20	2.15	3.31	1.408	3.89
OC	9.78	40.83	4.13	25.75	16.50	41.55	31.64	48.68	15.51	42.88
SO_4^{2-}	2.47	10.32	4.11	25.63	4.49	11.30	6.60	10.16	4.42	12.21
NH_4^+	1.43	5.95	1.68	10.48	2.31	5.81	3.42	5.25	2.21	6.10
NO_3^-	1.34	5.58	0.18	1.09	2.00	5.04	3.36	5.17	1.72	4.75
Unidentified	7.35	30.7	5.11	31.8	12.43	31.3	17.4	26.7	10.58	29.25
	(ng/m ³)	(%)								
Cl^{-}	92.52	0.39	4.29	0.03	118.08	0.30	177.09	0.27	98	0.27
Са	92.34	0.39	176.34	1.10	118.02	0.30	158.91	0.24	136	0.38
Cu	71.02	0.30	15.59	0.10	15.65	0.04	5.70	0.01	27	0.07
Na	53.02	0.22	31.82	0.20	25.07	0.06	24.04	0.04	33	0.09
Mn	21.35	0.09	4.32	0.03	5.56	0.01	2.69	0.00	8	0.02
Mg	8.47	0.04	9.78	0.06	19.17	0.05	14.59	0.02	13	0.04
V	7.29	0.03	4.69	0.03	3.66	0.01	2.63	0.00	5	0.01
Cr	5.91	0.02	1.92	0.01	1.45	0.00	0.58	0.00	2	0.01
Zn	2.44	0.01	4.02	0.03	4.49	0.01	3.45	0.01	4	0.01
Со	0.67	0.00	0.22	0.00	0.16	0.00	0.04	0.00	0.3	0.00

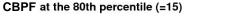
Identification of sources of PM and gaseous pollutants using receptor modelling

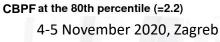
PMF (EPA PMF 5.0) method reveals 5 sources:

- Oil refinery
- Biomass burning
- Traffic
- Natual
- Undefined (V)

Oil refinery	29.6%
Biomass burning	25.5%
Traffic	23.6%
Natural	13.3%
U	7.8%

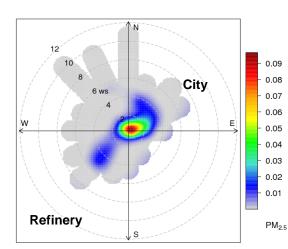


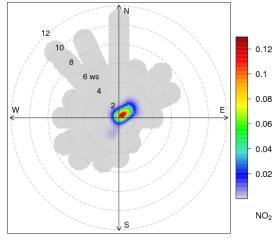



Challenges in meteorology 7

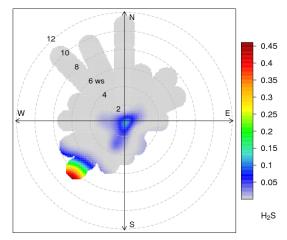
Identification of sources of PM and gaseous pollutants using receptor modelling

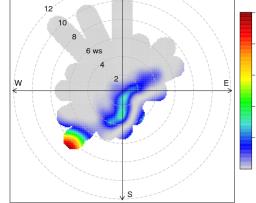
CBPF – 80th percentile high concentrations

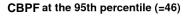



Identification of sources of PM and gaseous pollutants using receptor modelling

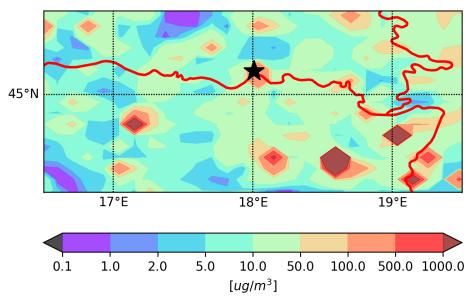

CBPF - 95th percentile peak concentrations







CBPF at the 95th percentile (=3.8)


Air quality modelling

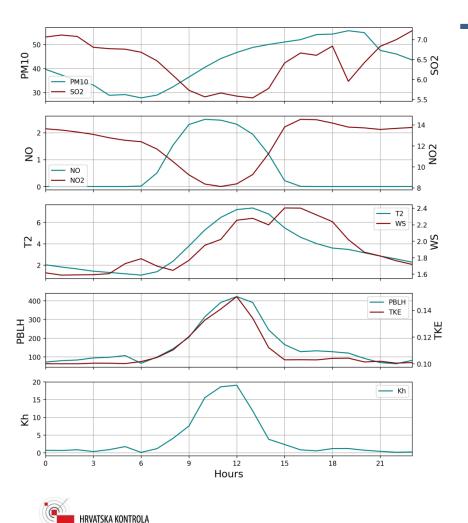
WRF-Chem model was used to tackle addressed problems in the JEM paper:

- What is a relation between meteorological conditions and daily variability (with focus on SABL)
- Maximum/peak of SO₂ concentrations at noon?
- Key mechanism behind daily PM10 variability (high concentrations during night, lower during early morning)?

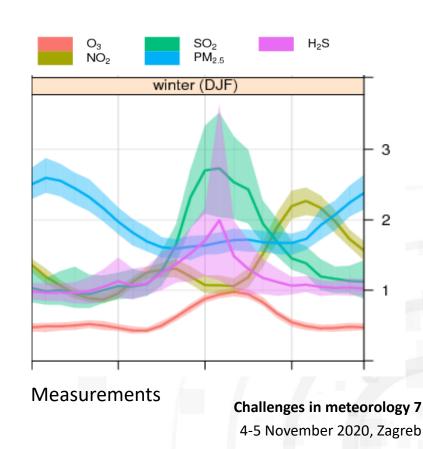
The modelling setup:

- Meteorology 1x1km
- Chemistry 9x9km
- Emission: TNO MACC III
- Chem BC: Mozart
- Meteo IC/BC: FNL GFS

Modelling domain



preliminary results


AQ modelling

Modeling concentrations

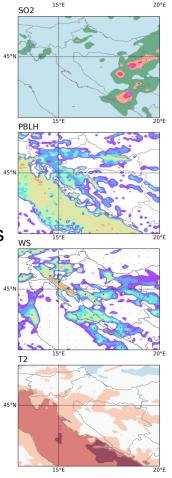
7RAČNF PLOVIDBF

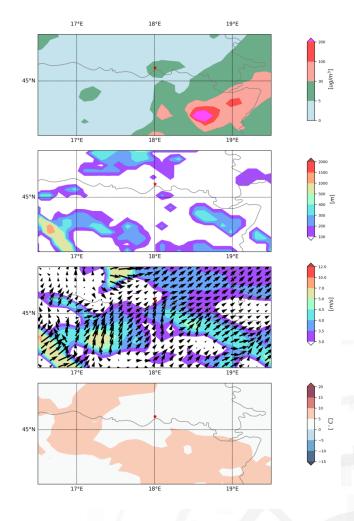


Different performance for SO₂ and PM

preliminary results

AQ modelling




		BIAS [%]	R	Sys	Unsys	RMSE
	WS	-42	0.5	0.3	0.7	1.4
	Т	1.88	0.9	0	0.04	1.8
s	SO2	15.1	0.1	0.02	2.7	30.6

AQ modelling

Model recognised:

- Increased concentrations over area of interest
- Low PBLH values
- Low wind speed conditions (indicate SABL conditions)
- Cold pool over area of interest during increased concentrations

Summary

- We could distinguis the contribution to the measured concentration between different emission sectors a large emission source (oil refinery), road traffic, domestic heating, natural (resuspension, or long range transport)
- Dominating carbonaceous material in PM2.5, followed by SIA and nitrogen oxides
- PMF results indicate reveals 5 major sources
 - Oil refinery 29.6%
 - Biomass burning 25.5%
 - Traffic 23.6%
 - Natural 13.3%
 - U 7.8%
- CBPF indicate importance of including meteorological factors in the analysis
 - Influence of SABL
 - Highest contribution to the peak SO₂ and H₂S concentrations from Oil refinery
- AQ modeling preliminary results:
 - difference in diurnal pollutant patterns
 - Importance of accurate emission inventory
 - SABL conditions building up of concentration, SW wind lead to increase of concentrations

