

Climate influence on silver fir (Abies alba Mill.) defoliation and dieback in Gorski kotar

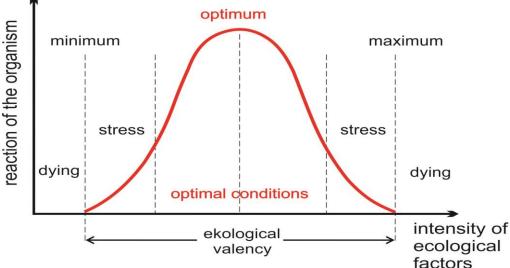
Damir Ugarković *(1), Ivica Tikvić⁽¹⁾

⁽¹⁾Faculty of Forestry University of Zagreb, Svetošimunska cesta 25, Zagreb, Croatia.

Hrvatsko meteorološko društvo Meteorološki izazovi 6 Znanstveno-stručni skup s međunarodnim sudjelovanjem

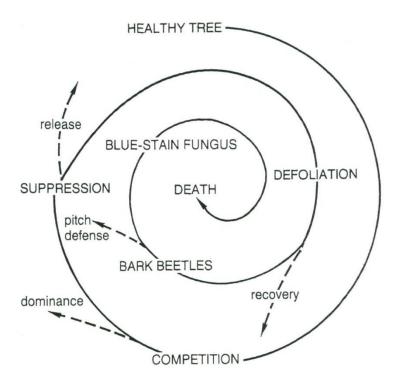
Zagreb, 15 – 16. November 2018.

www.sumfak.unizg.hr


INTRODUCTION

- Forest ecosystems presently are under constant change, caused either by natural variability or human activity.
- Dieback of silver fir at certain areas in Croatia is causing great ecological and economical problems.
- Beside abiotic factors, dieback of silver fir is significantly affected by some biotic factors.
- Considering crown defoliation, according to ICP Forest program for 2016, silver fir is the most endangered conifer tree species in Croatia.

Ecological valence

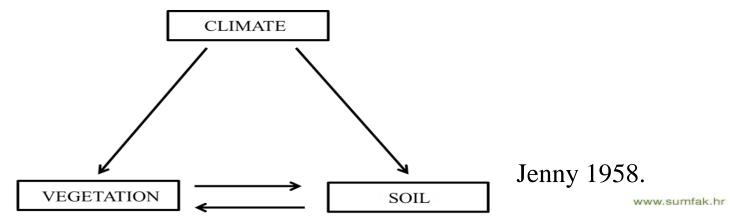

• Ecological valence is tolerance of organism or some species on certain ecological factor i.e. range between ecological minimum and maximum.

Tree dieback – result of abiotic and biotic factors

www.sumfak.hr

Mortality spiral illustrates the series of events leading to tree death (Franklin et al. 1987.

• In state of "stress" are so called "sanitary trees" that are marked for cutting according to rule book.


• State of sanitary trees (crown defoliation and damage, change of leaf colour, symptoms of pathogen infection) is result of limiting values one or more ecological factors (ecological minimum or maximum).

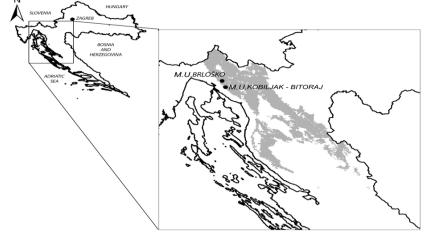
- Air temperature stenovalent species
- Water stenovalent species
- Soil silver fir is eurivalent species

Climate relationship to vegetation and soil

RESEARCH OBJECTIVES

The objective of this study was:

- Determine effect of abiotic factors like climate on defoliation and dieback of silver fir.
- To establish differences between crown defoliation and dieback intensity in two silver fir forest ecosystems as well as differences according to silver fir tree dieback pattern.


Research area - Dinarides

- Mountain Croatia, areal of beech fir forests
- Beech-fir forests cover ~ 1 Mil. ha in SE Europe
- In Croatia cca 200 000 ha
- Natural structure and species compostion
- No clear cut in the past
- Managed with Selection system
- Emphasised sensitivity of beech fir forest on the edge of their areal
- Tree dieback and degradation of entire forests stand

Study site

Air temperature = 7.2° C Precipitation $\approx 2\ 000$ mm

Moderate rain climate

Mountain Croatia, areal of fir and beech-fir forests

Emphasised sensitivity of fir and beech-fir forests on the edge of their areal

Tree decline and degradation of entire forest stands

MATERIAL AND METHODS

Experimentals plots	Area (m ²)	Forest associations	Soil type	Parent substrate	
Bitoraj, N = 4	10 000	The Dinaric beech- fir forest	Calcocambisol	Limestone	
Brloško, N = 4	10 000	Fir forest with hard fern	Dystric cambisol	Silicate rocks	

Permanent experimental plots:

- 50 x 50 m
- Bitoraj, N = 194 trees
- Brloško, N = 81 trees

- Each silver fir tree of breast height diameter of over 10 cm was assessed for crown defoliation.
- Visual assessment of crown defoliation was done in July and August of each year during the period from 1994 until 2013 with accuracy of 5 % and categorized into defoliation degrees (ICP Forest).
- For analysis of climatic factors that influence crown condition of silver fir we used data from Vrelo Ličanke weather station.
- Using the KlimaSoft 2.0 program, we established drought years, drought duration in days, water balance and potential evapotranspiration (PET) in mm according to the Thornthwaite method.

- Dieback intensity was shown as percentage of number of dead trees (N %), tree basal area (%) and volume (%) of dead trees against living trees. Dieback causes were divided in two groups: dieback due to crown defoliation and dieback due to wind throw.
- Correlation analysis established the connection between crown defoliation and climatic factors, as well as between crown defoliation and tree dieback.
- Student t-test and u-test were used to compare crown defoliation and time of dieback between experimental plots as well as dieback causes.
- All climatic data was processed using the KlimaSoft 2.0 program, while statistical data processing (descriptive statistics, correlation, U-test) was conducted in Statistica 7.1. program (StatSoft, Inc. 2003).

RESULTS

Table 1. Descriptive statistics of climatic factors in research area

Climate elements	Mean	Min – Max
Precipitation (mm)	953,66	585,60 - 1525,10
Ait temperature (°C)	13,12	12,07 - 14,40
Water balance (mm)	480,01	71,50 - 1018,40
PET (mm)	494,13	468,50 - 529,10
Drought (days)	17,00	0,00 - 90,00

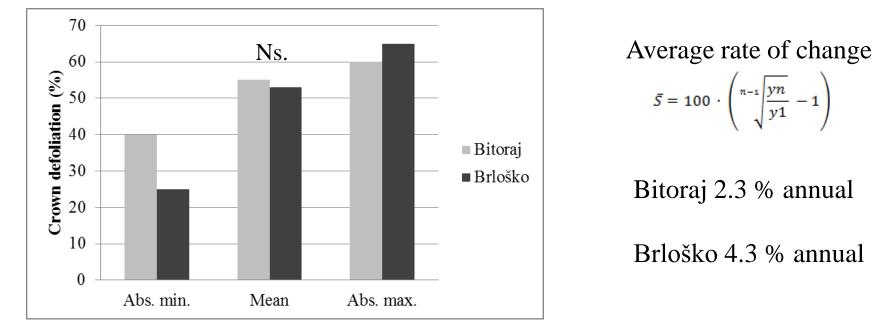
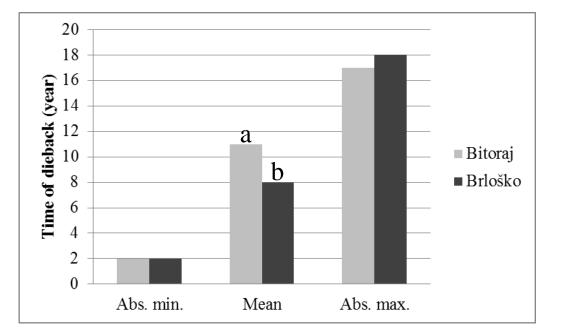



Figure 1. Descriptive statistics of crown defoliation (%) Ns = not significant, p > 0.05

Figure 2. Descriptive statistics of time of dieback (year)

^{a,b} Values within column marked with different letter, differ significantly (p < 0.05)

Table 2. Correlation between silver fir tree crown defoliation and climatic factors

Variable	Crown	Monitor.	Veg.	Veg.	Water	Veg. PET	Drought	Drought
	defoliation	years	precip.	temp.	balance	0	year	days
Crown defoliation	1.00	-	-	-	-	-	-	-
Monitor. years	0,76*	1.00	-	-	-	-	-	-
Veg. precip.	0,12	0,01	1.00	-	-	-	-	-
Veg. temp.	0,30*	0,30*	-0,07	1.00	-	-	-	-
Water balance	0,19	0,11	0,87*	-0,07	1.00	-	-	-
Veg. PET	0,23*	0,24*	0,02	0,79*	-0,03	1.00	-	-
Drought year	0,15*	0,19	-0,34*	0,41*	-0,24*	0,39*	1.00	-
Drought days	0,11	0,21	-0,28*	0,37*	-0,18	0,30*	0,89*	1.00

* significant at p < 0.05

Table 3. Correlation of silver fir defoliation and tree dieback intensity

	Site		
Dieback intensity	Bitoraj	Brloško	
	Crown defoliation (%)		
Number of trees, N (%)	0,61*	0,12*	
Basal area, G (%)	0,47*	0,11*	
Volume, V (%)	0,43*	0,11*	

* significant at p < 0.05

Table 4. Dead silver fir trees (N, %) according to dieback pattern on experimental plot "Bitoraj" in the Dinaric beech-fir forest

Site Bitoraj	Percentage of dieback		
Wind thrown/Wind breakage	5 trees	19 %	
Crown defoliation	22 trees	81 %	
Total number of dead trees	27 trees		
Annual dieback intensity	1,4 tree		

Table 5. Silver fir dead trees (N, %) according to dieback pattern on experimental plot "Brloško" in fir forest with hard fern

Site Brloško	Percentage of dieback		
Wind thrown/Wind breakage	6 trees	29 %	
Crown defoliation	15 trees	71 %	
Total number of dead trees	21 trees		
Annual dieback intensity	1,1 tree		

CONCLUSIONS

- Tree crown defoliation of silver fir has significantly increased over the monitored time period.
- Air temperature, potential evapotranspiration and drought are the most significant climatic elements that crown defoliation depends on.
- Tree crown defoliation of silver fir has significantly increased along with the values of air temperature, potential evapotranspiration and drought in vegetation period.
- Tree crown defoliation has significantly influenced tree dieback process.

- On experimental plots, the dominant cause of dieback was crown defoliation and lesser one was wind throw.
- Average annual dieback intensity according to number of trees was higher on experimental plot "Brloško" (fir forest with hard fern) in comparison to experimental plot "Bitoraj" (Dinaric beech-fir forest).

THANK YOU FOR YOUR ______ ATTENTION!