ENSO and NAO influence on climate variability in Europe

Sara Ivasić, Ines Muić and Ivana Herceg Bulić

This work has been supported in part by Croatian Science Foundation under the project 252573 (CroClimGoGreen)

Meteorološki izazovi

6

NAO North Atlantic Oscillation

- NAO: the 1st EOF of MSLP or Z500
- Internal mode of atmospheric variability
- Dominant mode of variability on a range of time scales over the NAE region
- European seasonal weather is strongly affected by NAO

ENSO

El Niño Southern Oscillation

- ENSO impact on North Atlantic/European region (NAE) difficult to asses; incomplete dynamical understanding → large internal variability of the atmosphere; impact of other phenomena (i.e. NAO; Hurrell and van Loon, 1997; Greatbatch, 2000), seasonal dependence of ENSO response (Brönnimann 2007), nonlinearity and non-stationarity in time (Pozo-Vázquez et al. 2015)
- Interactions with regional seasonal cycle, chaotic properties, complexity of feedbacks can mask ENSO signal over Europe

drier tendency wetter mixed (seasonal reve

ENSO signature in SPEEDY model → Experimental design

Modeled data: experiments based on ensembles of numerical simulations by ICTPAGCM (SPEEDY; T30L8)

- 1. CTRL: 20-member ensemble; simulations forced with observed global monthly SST anomalies
- 2. MIX: 10-member ensemble, SPEEDY coupled with a passive slab ocean layer in the North Atlantic

- NAO index: PC1 of JFM MSLP over the North Atlantic/European region (NAOI)
- **ENSO index:** area averaged JFM SSTs in Nino3.4 region (NINO3.4)
- Observed data:

Precipitation: Climatic Research Unit (**CRU**) gridded monthly dataset (0.5°×0.5°)

Sea-level pressure: HadSLP re-analysis (5°×5°); provided by Hadley Centre, UK

SST: NOAA_ERSST_V2 data (provided by NOAA/OAR/ESRL PSD, USA)

Sea-ice climatology: HadISST (Hadley Centre, UK)

Herceg Bulić and Branković (ClimDyn 2007); Herceg Bulić, Branković and Kucharski (ClimDyn 2011)

- **SPEEDY:** Symmetrical **ENSO signal** in the **winter** (**JFM**) climate anomalies over the **PNA** region in Z200 anomalies as well as in other atmospheric variables (precipitation, temperature, mslp ...)
- Weak but detectable winter ENSO signal over the NAE region (in line with some previous observational and modelling studies (e.g. Fraedrich, Tellus 1994; Brönnimann, RevGeophys 2007)
- NAE: Generally, El Niño → cyclonic type of weather La Niña → anticyclonic type of weather

Fraedrich and Müller [1992]

Delayed ENSO impact

EOF1 (AMJ precipitation)

EOF1 (AMJ CTRL PRECIP) cont=-1.5 -0.5 -0.2 -0.1 -0.05 -0.01 0.01 0.05 0.1 0.2 0.5 1.5 75N -70N 85N-BON 66N 50N 45N 40% 35N 3DN 26N 10E 206 30E 40B 60B 201

-1.5 -0.5 -0.2 -0.1 -0.05 -0.010.01 0.05 0.1 0.2 0.5 1.5

SPEEDY

EOF1 (AMJ precipitation)

EOF1 (AMJ CRU PRECIP)

EOF1 (AMJ CTRL PRECIP)

30E

Correlation PC1 AMJ precipitation - SSTA

:04

9ÓW

ĐÓW

CRU

203

RINIQ

56N

50% 46N

40% 9610

300 (Au

> 75N 70%

85N-

BON

66N 50)

45N-

40%

35N 3DN

26N -

SPEEDY

EOF1 (AMJ precipitation)

CRU

SPEEDY

Correlation PC1 AMJ precipitation - SSTA

04

9ÓW

BQM

AMJ NAE precipitation variability is correlated with JFM SSTs in tropical Pacific and projects onto the El Niño pattern!

MIX winter ENSO experiment **ENSO** forcing restricted to winter (Oct – Mar)

708

65X

603 56X

503

45N

40X

35N

NAO signature in SPEEDY

Seasonal persistence

MAM

DJF

507

4.07

357

North Atlantic as a link between the wintertime NAO and the following spring climate Herceg Bulić and Kucharski (JClim 2014)

Signal and noise in an ensemble of numerical simulations

- A realization = Signal + Noise
- Ensemble means define the "climate signal"
- Deviations from the ensemble mean define the noise

Noise:
$$\sigma_n^2 = \frac{1}{M} \sum_{j=1}^M \left[\frac{1}{N} \sum_{i=1}^N (x_{i,j} - \overline{x}_j)^2 \right]$$

SPEEDY:

M – number of years (156) N – number of ensemble memebers (35)

(a) Signal GH200; jfm; Ctrl cont=50

(a) Signal GH200; mam; Ctrl

50 100 150 200 250 300 350 400 450

(a) Signal GH200; amj; Ctrl cont=50

50 100 150 200 250 300 350 400 450

(b) Noise GH200; jfm; Ctrl cont=400

(b) Noise GH200; mam; Ctrl cont=400

(b) Noise GH200; amj; Ctrl cont=400

400 800 1200 1600 2000 2400 2800 3200 3600

ENSO signal and noise in SPEEDY

(a) ElNino signal GH200; JFM cont=400

400 800 1200 1600 2000 2400 2800 3200 3600

(c) LaNina signal GH200; JFM cont=400

400 800 1200 1600 2000 2400 2800 3200 3600

(e) ENSO signal GH200; JFM cont=400

400 800 1200 1600 2000 2400 2800 3200 3600

(b) Strong ElNino signal GH200; JFM

(d) Strong LaNina signal GH200; JFM cont=400

ENSO signal and noise in SPEEDY

(a) ElNino signal GH200; JFM cont=400

(c) LaNina signal GH200; JFM cont=400

400 800 1200 1600 2000 2400 2800 3200 3600

(e) ENSO signal GH200; JFM cont=400

400 800 1200 1600 2000 2400 2800 3200 3600

(b) Strong ElNino signal GH200; JFM cont=400

(d) Strong LaNina signal GH200; JFM cont=400

400 800 1200 1600 2000 2400 2800 3200 3600

(e) ENSO noise GH200; JFM cont=400

400 800 1200 1600 2000 2400 2800 3200 3600

ENSO signal and noise in SPEEDY

(a) ElNino signal GH200; JFM cont=400

400 800 1200 1600 2000 2400 2800 3200 3600

(c) LaNina signal GH200; JFM cont=400

400 800 1200 1600 2000 2400 2800 3200 3600

(b) Strong ElNino signal GH200; JFM

400 800 1200 1600 2000 2400 2800 3200 3600

(d) Strong LaNina signal GH200; JFM cont=400

(e) ENSO noise GH200; JFM cont=400

EF 5

Conclusion

- NAE region is affected by ENSO and NAO
- NAO: dominant influence
- **ENSO**: weak but detectable signal
- Delayed ENSO and NAO impact *WINTER → SPRING*
- North Atlantic: enables seasonal persistence
- NAE region
 - signal << noise
 - ENSO related signal > noise
 - seasonal persistence of the ENSO signal

Future?

- Is it possible to distinguish ENSO from NAO signal?
- Seasonal persistence of the signal (spring, summer...)
- The strength of seasonal ENSO signal
- Signal-to-noise ratio
- Possibility of implications for seasonal predictions